To difference or not to difference: a Monte Carlo investigation of inference in vector autoregression models

نویسندگان

  • Richard Ashley
  • Randal J. Verbrugge
چکیده

It is often unclear whether time series displaying substantial persistence should be modelled as a vector autoregression in levels (perhaps with a trend term) or in differences. The impact of this decision on inference is examined here using Monte Carlo simulation. In particular, the size and power of variable inclusion (Granger causality) tests and the coverage of impulse response function confidence intervals are examined for simulated vector autoregression models using a variety of estimation techniques. We conclude that testing should be done using differenced regressors, but that overdifferencing a model yields poor impulse response function confidence interval coverage; modelling in Hodrick-Prescott filtered levels yields poor results in any case. We find that the lag-augmented vector autoregression method suggested by Toda and Yamamoto (1995) – which models the level of the series but allows for variable inclusion testing on changes in the series – performs well for both Granger causality testing and impulse response function estimation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monte Carlo characterization of photoneutrons in the radiation therapy with high energy photons: a Comparison between simplified and full Monte Carlo models

Background: The characteristics of secondary neutrons in a high energy radiation therapy room were studied using the MCNPX Monte Carlo (MC) code. Materials and Methods: Two MC models including a model with full description of head components and a simplified model used in previous studies were implemented for MC simulations. Results: Results showed 4-53% difference between full and wit...

متن کامل

Unit Root Quantile Autoregression Inference

We study statistical inference in quantile autoregression models when the largest autoregressive coefficient may be unity. The limiting distribution of a quantile autoregression estimator and its t-statistic is derived. The asymptotic distribution is not the conventional Dickey-Fuller distribution, but a linear combination of the Dickey-Fuller distribution and the standard normal, with the weig...

متن کامل

Time-Varying Structural Vector Autoregressions and Monetary Policy: A Corrigendum

This note corrects a mistake in the estimation algorithm of the time-varying structural vector autoregression model of Primiceri (2005) and proposes a new algorithm that correctly applies the procedure proposed by Kim, Shephard, and Chib (1998) to the estimation of VAR or DSGE models with stochastic volatility. Relative to Primiceri (2005), the correct algorithm involves a different ordering of...

متن کامل

Long-run exclusion and the determination of cointegrating rank: Monte Carlo evidence

This note investigates long-run exclusion in a cointegrated vector autoregressive (VAR) model from the viewpoint of …nite-sample statistical inference. Monte Carlo experiments show that, in various circumstances, a mis-speci…ed partial VAR model, which is justi…ed by the existence of a long-run excluded variable, can lead to better …nite-sample inference for cointegrating rank than a fully-spec...

متن کامل

Model Selection and Adaptive Markov chain Monte Carlo for Bayesian Cointegrated VAR model

In this paper, we develop novel Markov chain Monte Carlo sampling methodology for Bayesian Cointegrated Vector Auto Regression (CVAR) models. Here we focus on two novel extensions to the sampling methodology for the CVAR posterior distribution. The first extension we develop replaces the popular sampling methodology of the griddy Gibbs sampler with an automated alternative which is based on an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJDATS

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2009